论文标题

视频显着对象检测的新型长期迭代挖掘计划

A Novel Long-term Iterative Mining Scheme for Video Salient Object Detection

论文作者

Chen, Chenglizhao, Wang, Hengsen, Fang, Yuming, Peng, Chong

论文摘要

现有的最先进的(SOTA)视频显着对象检测(VSOD)模型已广泛遵循短期方法,该方法通过仅考虑当前连续的有限帧而动态地确定空间和时间显着性融合之间的平衡。但是,短期方法论具有一个关键局限性,它与我们视觉系统的真实机制相抵触,这是一种典型的长期方法。结果,故障案例不断出现在当前SOTA模型的结果中,而短期方法论成为主要的技术瓶颈。为了解决这个问题,本文提出了一种新颖的VSOD方法,该方法以完整的长期方式执行了VSOD。我们的方法将顺序的VSOD(一个顺序任务)转换为数据挖掘问题,即将输入视频序列分解为对象提案,然后以易于措施的方式挖掘出明显的对象建议。由于所有对象建议都可以同时获得,因此提出的方法是一种完整的长期方法,可以减轻植根于常规短期方法的一些困难。此外,我们设计了一个在线更新方案,该方案可以掌握显着对象的最具代表性和可信赖的模式概况,从而使用丰富的细节输出框架显着图,并在空间和时间上平滑。所提出的方法在五个广泛使用的基准数据集上几乎优于所有SOTA模型。

The existing state-of-the-art (SOTA) video salient object detection (VSOD) models have widely followed short-term methodology, which dynamically determines the balance between spatial and temporal saliency fusion by solely considering the current consecutive limited frames. However, the short-term methodology has one critical limitation, which conflicts with the real mechanism of our visual system -- a typical long-term methodology. As a result, failure cases keep showing up in the results of the current SOTA models, and the short-term methodology becomes the major technical bottleneck. To solve this problem, this paper proposes a novel VSOD approach, which performs VSOD in a complete long-term way. Our approach converts the sequential VSOD, a sequential task, to a data mining problem, i.e., decomposing the input video sequence to object proposals in advance and then mining salient object proposals as much as possible in an easy-to-hard way. Since all object proposals are simultaneously available, the proposed approach is a complete long-term approach, which can alleviate some difficulties rooted in conventional short-term approaches. In addition, we devised an online updating scheme that can grasp the most representative and trustworthy pattern profile of the salient objects, outputting framewise saliency maps with rich details and smoothing both spatially and temporally. The proposed approach outperforms almost all SOTA models on five widely used benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源