论文标题

通过非单身操作员的紧凑型统一表示,将重新归一化的耦合群集方法绘制为量子计算机

Mapping renormalized coupled cluster methods to quantum computers through a compact unitary representation of non-unitary operators

论文作者

Peng, Bo, Kowalski, Karol

论文摘要

非独立理论通常在量子系统的经典模拟中看到。在这些理论中,耦合群集方程(MMCC)的力矩方法以及随之而来的重新归一化耦合群集(CC)方法的类别已演变为描述各种量子系统中相关效应的最准确方法之一。 MMCC形式主义提供了一种有效的方法,可以使用矩或CC方程校正近似CC公式(父理论)的能量,这些方法不用于确定近似群集振幅。在本文中,我们提出了一种用于计算MMCC基态能量的量子算法,该算法在经典计算或其他量子算法上提供了两个主要优势:(i)在整个希尔伯特空间中使用cc suppers置于cc的cc矩量的可能性,并使用整个希尔伯特空间中的任意等级的cc瞬间,并使用父母群集运营商的任意形式用于mmccc for mmcc for mmcc for mmcc for mmcc for mmcc for mmcc for mmcc spepentirion; (ii)通过对通常非独立操作员的紧凑型单一表示,量子模拟中测量的数量显着减少。我们说明了在广泛的测试案例中的方法的鲁棒性,包括约40个使用4〜40 Qubits编码的基础不同的分子系统,并为8 Qubit半填充,四个位置的单个杂物Anderson Anderson Anderson Anderson模型和12 Qubit Filemide Modilogen firoride Mosical System and Noecular and Noecular forsive nosie-Fosie-Fuent Quantie Mmcccy Mmcccy提供了详细的MMCC分析。我们还概述了MMCC形式主义扩展到统一CC波函数Ansatz的情况。

Non-unitary theories are commonly seen in the classical simulations of quantum systems. Among these theories, the method of moments of coupled-cluster equations (MMCCs) and the ensuing classes of the renormalized coupled-cluster (CC) approaches have evolved into one of the most accurate approaches to describe correlation effects in various quantum systems. The MMCC formalism provides an effective way for correcting energies of approximate CC formulations (parent theories) using moments, or CC equations, that are not used to determine approximate cluster amplitudes. In this paper, we propose a quantum algorithm for computing MMCC ground-state energies that provide two main advantages over classical computing or other quantum algorithms: (i) the possibility of forming superpositions of CC moments of arbitrary ranks in the entire Hilbert space and using an arbitrary form of the parent cluster operator for MMCC expansion; and (ii) significant reduction in the number of measurements in quantum simulation through a compact unitary representation for a generally non-unitary operator. We illustrate the robustness of our approach over a broad class of test cases, including ~40 molecular systems with varying basis sets encoded using 4~40 qubits, and exhibit the detailed MMCC analysis for the 8-qubit half-filled, four-site, single impurity Anderson model and 12-qubit hydrogen fluoride molecular system from the corresponding noise-free and noisy MMCC quantum computations. We also outline the extension of MMCC formalism to the case of unitary CC wave function ansatz.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源