论文标题
残留大气斑点的实时局灶平面波浪控制实验室演示
Laboratory Demonstration of Real-Time Focal Plane Wavefront Control of Residual Atmospheric Speckles
论文作者
论文摘要
当前和未来的高对比度成像工具旨在在近距离轨道分离,质量较低和/或年龄较大的年龄较近的轨道分离时检测外部行星。但是,在冠状科学图像图像中不断发展的斑点限制了最先进的地面系外行星成像仪器的对比。对于基于地面的自适应光学仪(AO)仪器,对于大多数斑点抑制技术而言,它仍然具有挑战性,可以减轻动态大气和准静态仪器斑点。我们提出了一种焦平面波前传感和控制算法来应对这一挑战,称为快速大气的自相机摄像机(SCC)技术(快速),从理论上讲,即使仅检测到只有几个光子,SCC也能够向下操作至毫秒的时间表。在这里,我们在圣克鲁斯极限AO实验室(密封)测试台上介绍了FAST的第一个实验结果。特别是,我们说明了``第二阶段''基于AO的焦平面波浪控制的好处,该局灶性平面波锋控制,表现出多达5倍的对比度改进,并通过快速闭环的剩余大气湍流(用于低阶空间模式)的快速闭环补偿 - 降至20毫秒频率。
Current and future high contrast imaging instruments aim to detect exoplanets at closer orbital separations, lower masses, and/or older ages than their predecessors. However, continually evolving speckles in the coronagraphic science image limit contrasts of state-of-the-art ground-based exoplanet imaging instruments. For ground-based adaptive optics (AO) instruments it remains challenging for most speckle suppression techniques to attenuate both the dynamic atmospheric as well as quasi-static instrumental speckles on-sky. We have proposed a focal plane wavefront sensing and control algorithm to address this challenge, called the Fast Atmospheric Self-coherent camera (SCC) Technique (FAST), which in theory enables the SCC to operate down to millisecond timescales even when only a few photons are detected per speckle. Here we present the first experimental results of FAST on the Santa Cruz Extreme AO Laboratory (SEAL) testbed. In particular, we illustrate the benefit of ``second stage'' AO-based focal plane wavefront control, demonstrating up to 5x contrast improvement with FAST closed-loop compensation of evolving residual atmospheric turbulence -- both for low and high order spatial modes -- down to 20 millisecond-timescales.