论文标题
大规模SQCD的拓扑曲折,第一部分
Topological twists of massive SQCD, Part I
论文作者
论文摘要
我们考虑具有四维$ \ MATHCAL {n} = 2 $ SUPERSMMETRIC QCD的拓扑曲折,带有量规组SU(2)和$ n_f \ leq 3 $基本的超级千年化。曲折的标签是为风味群选择的背景通量选择,该曲线提供了无限的拓扑分区功能。在本第I部分中,我们证明,在存在此类通量的情况下,可以在紧凑的四个manifold上为任意规束制定理论。此外,我们考虑了超多种的任意质量,这些质量引入了新的复杂性,以评估库仑分支上的低能路径积分。我们开发了评估这些路径积分的技术。在即将到来的第二部分中,我们将处理明确的评估。
We consider topological twists of four-dimensional $\mathcal{N}=2$ supersymmetric QCD with gauge group SU(2) and $N_f\leq 3$ fundamental hypermultiplets. The twists are labelled by a choice of background fluxes for the flavour group, which provides an infinite family of topological partition functions. In this Part I, we demonstrate that in the presence of such fluxes the theories can be formulated for arbitrary gauge bundles on a compact four-manifold. Moreover, we consider arbitrary masses for the hypermultiplets, which introduce new intricacies for the evaluation of the low-energy path integral on the Coulomb branch. We develop techniques for the evaluation of these path integrals. In the forthcoming Part II, we will deal with the explicit evaluation.