论文标题

什么是多余的,什么不是?建模中的计算权衡以生成能源基础设施部署的替代方案

What is redundant and what is not? Computational trade-offs in modelling to generate alternatives for energy infrastructure deployment

论文作者

Lombardi, Francesco, Pickering, Bryn, Pfenninger, Stefan

论文摘要

鉴于迫切需要设计可靠的碳中立策略,因此“建模以生成替代品”(MGA)在能源领域越来越受欢迎。然而,当应用于最新能源系统模型时,MGA面临局限性:可以生成的替代方案的数量实际上是无限的;没有现实的计算工作可以发现完整的技术和空间多样性。在这里,基于我们自己的孢子方法,是MGA的高度定制和空间说明的进步,我们在经验上测试了不同的搜索策略(包括从其他MGA方法改编),目的是确定如何最大程度地减少冗余计算。随着欧洲电力系统模型的应用,我们表明,对于固定数量的生成的替代方案,使用可用的计算能力来揭示技术配置的空间多样性,这是一个明确的权衡。此外,我们表明,专注于技术多样性可能无法识别吸引现实世界利益相关者的系统配置,例如那些在本地规模上更加分布的系统配置。基于这个证据表明,没有可行的替代方案可以被视为先验的冗余,我们建议最初以平衡空间和技术多样性的方式寻找选项。这可以通过结合两种不同策略的优势来实现。然后,可以根据利益相关者的反馈来完善所得的解决方案空间。更普遍地,我们建议采用临时MGA灵敏度分析,旨在测试研究的中心主张,作为计算廉价的标准,以提高能源建模分析的质量。

Given the urgent need to devise credible, deep strategies for carbon neutrality, approaches for `modelling to generate alternatives' (MGA) are gaining popularity in the energy sector. Yet, MGA faces limitations when applied to state-of-the-art energy system models: the number of alternatives that can be generated is virtually infinite; no realistic computational effort can discover the complete technology and spatial diversity. Here, based on our own SPORES method, a highly customisable and spatially-explicit advancement of MGA, we empirically test different search strategies - including some adapted from other MGA approaches - with the aim of identifying how to minimise redundant computation. With application to a model of the European power system, we show that, for a fixed number of generated alternatives, there is a clear trade-off in making use of the available computational power to unveil technology versus spatial diversity of system configurations. Moreover, we show that focussing on technology diversity may fail to identify system configurations that appeal to real-world stakeholders, such as those in which capacity is more spread out at the local scale. Based on this evidence that no feasible alternative can be deemed redundant a priori, we propose to initially search for options in a way that balances spatial and technology diversity; this can be achieved by combining the strengths of two different strategies. The resulting solution space can then be refined based on the feedback of stakeholders. More generally, we propose the adoption of ad-hoc MGA sensitivity analyses, targeted at testing a study's central claims, as a computationally inexpensive standard to improve the quality of energy modelling analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源