论文标题
与关键信息召回的医学对话响应生成
Medical Dialogue Response Generation with Pivotal Information Recalling
论文作者
论文摘要
医学对话生成是一项重要但具有挑战性的任务。以前的大多数作品都依赖于注意力机制和大规模预处理的语言模型。但是,这些方法通常无法从漫长的对话历史中获取关键信息,从而产生准确而有益的响应,因为医疗实体通常散布在多种话语中以及它们之间的复杂关系。为了减轻此问题,我们提出了一个具有关键信息召回(Medpir)的医疗响应生成模型,该模型建立在两个组件上,即知识吸引的对话图形编码器和召回增强的生成器。知识吸引的对话图编码器通过利用话语中的实体之间的知识关系,并使用图形注意力网络编码它来构建对话图。然后,召回增强的发电机通过在产生实际响应之前生成对话的摘要来增强这些关键信息的使用。两个大型医学对话数据集的实验结果表明,Medpir在BLEU分数和医疗实体F1度量中的表现优于强大的基准。
Medical dialogue generation is an important yet challenging task. Most previous works rely on the attention mechanism and large-scale pretrained language models. However, these methods often fail to acquire pivotal information from the long dialogue history to yield an accurate and informative response, due to the fact that the medical entities usually scatters throughout multiple utterances along with the complex relationships between them. To mitigate this problem, we propose a medical response generation model with Pivotal Information Recalling (MedPIR), which is built on two components, i.e., knowledge-aware dialogue graph encoder and recall-enhanced generator. The knowledge-aware dialogue graph encoder constructs a dialogue graph by exploiting the knowledge relationships between entities in the utterances, and encodes it with a graph attention network. Then, the recall-enhanced generator strengthens the usage of these pivotal information by generating a summary of the dialogue before producing the actual response. Experimental results on two large-scale medical dialogue datasets show that MedPIR outperforms the strong baselines in BLEU scores and medical entities F1 measure.