论文标题

使用机器学习的迭代数值方法的原则加速

Principled Acceleration of Iterative Numerical Methods Using Machine Learning

论文作者

Arisaka, Sohei, Li, Qianxiao

论文摘要

迭代方法在大规模的科学计算应用中无处不在,最近已经提出了许多基于元学习的方法来加速它们。但是,缺乏对这些方法的系统研究以及它们与元学习的不同。在本文中,我们提出了一个框架来分析此类基于学习的加速方法,在该方法中,人们可以立即确定与经典的元学习不同。我们表明,这种出发可能导致模型性能的任意恶化。基于我们的分析,我们介绍了一种新颖的培训方法,用于基于学习的迭代方法加速。此外,从理论上讲,我们证明了所提出的方法可以改善现有方法,并通过各种数值应用来证明其重要的优势和多功能性。

Iterative methods are ubiquitous in large-scale scientific computing applications, and a number of approaches based on meta-learning have been recently proposed to accelerate them. However, a systematic study of these approaches and how they differ from meta-learning is lacking. In this paper, we propose a framework to analyze such learning-based acceleration approaches, where one can immediately identify a departure from classical meta-learning. We show that this departure may lead to arbitrary deterioration of model performance. Based on our analysis, we introduce a novel training method for learning-based acceleration of iterative methods. Furthermore, we theoretically prove that the proposed method improves upon the existing methods, and demonstrate its significant advantage and versatility through various numerical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源