论文标题
IETI-DP方法,用于与不精确的局部求解器的等几何分析中的不连续的Galerkin离散方法
A IETI-DP method for discontinuous Galerkin discretizations in Isogeometric Analysis with inexact local solvers
论文作者
论文摘要
我们构建用于iSOGEOMETIOM多绘制离散化的求解器,其中贴片是通过不连续的Galerkin方法耦合的,该方法允许考虑在接口上与不匹配的离散化。我们使用双重构图撕裂和互连(IETI-DP)方法来求解所得的线性系统。我们有兴趣使用迭代求解器解决出现的斑块本地问题,因为这允许减少内存足迹。我们使用快速对角线化方法解决了斑块本地问题,该方法已知在网格尺寸和样条级中很健壮。为了获得应用快速对角线化方法所需的张量结构,我们引入了局部函数空间的正交分裂。我们提出了一种融合理论,该理论证实了预处理系统的条件数仅与网格大小一起生长多层。数值实验证实了这一发现。此外,他们表明总体求解器的收敛性仅限于样条级。与标准的IETI-DP求解器相比,使用局部子问题的标准IETI-DP求解器相比,我们观察到计算时间的温和减少,并显着减少记忆要求。此外,实验表明在分布式内存机器上进行了良好的缩放行为。
We construct solvers for an isogeometric multi-patch discretization, where the patches are coupled via a discontinuous Galerkin approach, which allows the consideration of discretizations that do not match on the interfaces. We solve the resulting linear system using a Dual-Primal IsogEometric Tearing and Interconnecting (IETI-DP) method. We are interested in solving the arising patch-local problems using iterative solvers since this allows the reduction of the memory footprint. We solve the patch-local problems approximately using the Fast Diagonalization method, which is known to be robust in the grid size and the spline degree. To obtain the tensor structure needed for the application of the Fast Diagonalization method, we introduce an orthogonal splitting of the local function spaces. We present a convergence theory that confirms that the condition number of the preconditioned system only grows poly-logarithmically with the grid size. The numerical experiments confirm this finding. Moreover, they show that the convergence of the overall solver only mildly depends on the spline degree. We observe a mild reduction of the computational times and a significant reduction of the memory requirements in comparison to standard IETI-DP solvers using sparse direct solvers for the local subproblems. Furthermore, the experiments indicate good scaling behavior on distributed memory machines.