论文标题
部分可观测时空混沌系统的无模型预测
On the thermodynamic properties of fictitious identical particles and the application to fermion sign problem
论文作者
论文摘要
通过概括了最近开发的相同玻色子和费米子的路径积分分子动力学,我们考虑了具有实际参数$ξ$在玻色子之间连续插值的虚拟相同粒子的有限温度热力学特性($ξ= 1 $)和费米子($ξ= -1 $)。通过一般分析和数值实验,我们发现平均能量可能具有良好的分析属性,这是该真实参数$ξ$的函数,该函数提供了通过在准确地计算出$ GEQ 0 $ $ GEQ 0 $ $ eCed $ geqe 0 $的简单多项式功能的外推,从而通过外推通过外推和简单的多项式功能来计算相同费物的热力学特性。使用几个示例,可以表明我们的方法可以有效地为有限温度的费米子系统提供准确的能量值。我们的工作为某些量子系统提供了一个机会来规避费米昂标志问题。
By generalizing the recently developed path integral molecular dynamics for identical bosons and fermions, we consider the finite-temperature thermodynamic properties of fictitious identical particles with a real parameter $ξ$ interpolating continuously between bosons ($ξ=1$) and fermions ($ξ=-1$). Through general analysis and numerical experiments we find that the average energy may have good analytical property as a function of this real parameter $ξ$, which provides the chance to calculate the thermodynamical properties of identical fermions by an extrapolation with a simple polynomial function after accurately calculating the thermodynamic properties of the fictitious particles for $ξ\geq 0$. Using several examples, it is shown that our method can efficiently give accurate energy values for finite-temperature fermionic systems. Our work provides a chance to circumvent the fermion sign problem for some quantum systems.