论文标题

评估转移学习指标对RF域适应的价值

Assessing the Value of Transfer Learning Metrics for RF Domain Adaptation

论文作者

Wong, Lauren J., McPherson, Sean, Michaels, Alan J.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The use of transfer learning (TL) techniques has become common practice in fields such as computer vision (CV) and natural language processing (NLP). Leveraging prior knowledge gained from data with different distributions, TL offers higher performance and reduced training time, but has yet to be fully utilized in applications of machine learning (ML) and deep learning (DL) techniques to applications related to wireless communications, a field loosely termed radio frequency machine learning (RFML). This work begins this examination by evaluating the how radio frequency (RF) domain changes encourage or prevent the transfer of features learned by convolutional neural network (CNN)-based automatic modulation classifiers. Additionally, we examine existing transferability metrics, Log Expected Empirical Prediction (LEEP) and Logarithm of Maximum Evidence (LogME), as a means to both select source models for RF domain adaptation and predict post-transfer accuracy without further training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源