论文标题
通过高阶Denoising评分匹配,基于得分的扩散ODE的最大似然训练
Maximum Likelihood Training for Score-Based Diffusion ODEs by High-Order Denoising Score Matching
论文作者
论文摘要
基于得分的生成模型在发电质量和可能性方面具有出色的性能。他们通过将参数化的分数网络与一阶数据得分功能匹配来对数据分布进行建模。分数网络可用于定义ODE(“基于得分的扩散ode”),以进行精确的可能性评估。但是,颂歌的可能性与得分匹配目标之间的关系尚不清楚。在这项工作中,我们证明,通过在最大可能性和分数匹配目标之间显示差距,匹配一阶得分不足以最大程度地提高ODE的可能性。为了填补这一空白,我们表明,可以通过控制第一,第二和三阶得分匹配错误来界定颂歌的负可能性;我们进一步提出了一种新型的高阶denoising评分匹配方法,以实现基于得分的扩散ODE的最大似然训练。我们的算法确保高阶匹配误差受训练误差和较低级错误的限制。我们从经验上观察到,通过高阶分数匹配,基于得分的扩散ODE在合成数据和CIFAR-10上都具有更好的可能性,同时保持了高生成质量。
Score-based generative models have excellent performance in terms of generation quality and likelihood. They model the data distribution by matching a parameterized score network with first-order data score functions. The score network can be used to define an ODE ("score-based diffusion ODE") for exact likelihood evaluation. However, the relationship between the likelihood of the ODE and the score matching objective is unclear. In this work, we prove that matching the first-order score is not sufficient to maximize the likelihood of the ODE, by showing a gap between the maximum likelihood and score matching objectives. To fill up this gap, we show that the negative likelihood of the ODE can be bounded by controlling the first, second, and third-order score matching errors; and we further present a novel high-order denoising score matching method to enable maximum likelihood training of score-based diffusion ODEs. Our algorithm guarantees that the higher-order matching error is bounded by the training error and the lower-order errors. We empirically observe that by high-order score matching, score-based diffusion ODEs achieve better likelihood on both synthetic data and CIFAR-10, while retaining the high generation quality.