论文标题
拓扑半学的尺寸依赖性晶界散射
Size-Dependent Grain Boundary Scattering in Topological Semimetals
论文作者
论文摘要
我们评估了拓扑半学在高级互连技术中应用的生存能力,在高级互连技术中,导体的大小处于几纳米和晶界的范围内,预计将很普遍。我们使用第一原理计算与非平衡绿色功能(NEGF)技术相结合,研究了拓扑半学COSI和COGE的薄膜中的电子传输性能和晶界散射。与常规的互连金属(如Cu和Al)不同,我们发现Cosi和Coge即使在存在晶界的情况下,Cosi和Coge也主要通过薄膜结构中拓扑保护的表面状态进行。面积归一化的电阻随着有或没有晶界的带有和没有晶界的薄膜的薄膜厚度的降低而降低。与常规金属Cu和Al相反的趋势。具有晶界的拓扑半学薄膜中的表面主导的传输机制表明了经典电阻率尺寸效应的根本性新范式,并表明这些材料可能是纳米相互连接的应用候选者,其中高电阻率具有高度的高电阻率,可以作为主要的限制性限制性半径设备效果。
We assess the viability of topological semimetals for application in advanced interconnect technology, where conductor size is on the order of a few nanometers and grain boundaries are expected to be prevalent. We investigate the electron transport properties and grain boundary scattering in thin films of the topological semimetals CoSi and CoGe using first-principles calculations combined with the Non-Equilibrium Green's Function (NEGF) technique. Unlike conventional interconnect metals like Cu and Al, we find that CoSi and CoGe conduct primarily through topologically-protected surface states in thin film structures even in the presence of grain boundaries. The area-normalized resistance decreases with decreasing film thickness for CoSi and CoGe thin films both with and without grain boundaries; a trend opposite to that of the conventional metals Cu and Al. The surface-dominated transport mechanisms in thin films of topological semimetals with grain boundaries demonstrates a fundamentally new paradigm of the classical resistivity size-effect, and suggests that these materials may be promising candidates for applications as nano-interconnects where high electrical resistivity acts as a major bottleneck limiting semiconductor device performance.