论文标题
接触和特殊接触的非限制表示奇数类型
Non-restricted representations of contact and special contact Lie superalgebras of odd type
论文作者
论文摘要
令$ \ frak {g} $为奇数类型的超级属性或特殊触点的超级属于奇数类型的超级词,而在代数封闭的特征$ p> 3 $上。在本文中,我们研究了$ \ frak {g} $的非限制表示。通过使用诱导的KAC模块,我们表征了所有简单的$ \ frak {g} $ - 具有非词或$δ$ - i-invertible $ p $ - characters的模块。我们还获得了所有简单的$ \ frak {g} $ - 带有常规semimple $ p $ - 字符的模块。
Let $\frak{g}$ be a contact Lie superalgebra of odd type or special contact Lie superalgebra of odd type over an algebraically closed field of characteristic $p>3$. In this paper we study non-restricted representations of $\frak{g}$. By using induced Kac modules, we characterize all simple $\frak{g}$-modules with nonsingular or $Δ$-invertible $p$-characters. We also obtain all simple $\frak{g}$-modules with regular semisimple $p$-characters.