论文标题

确切可解决的哈密顿量为非阿您的准粒子

Exactly Solvable Hamiltonian for Non-Abelian Quasiparticles

论文作者

Kudo, Koji, Sharma, A., Sreejith, G. J., Jain, J. K.

论文摘要

预计遵守非阿贝尔辫子统计的颗粒将出现在分数量子厅效应中。特别是,一种模型的哈密顿模型,具有短距离三体相互作用($ \ hat {v}^\ text {pf} _3 $)的电子之间的电子限制为最低的兰道级,为q​​uasiholes提供了精确的解决方案,从而可以证明Quasiholes ofqueying nonon-non-babey of-abeying non-babelian braid statistical的原则证明。我们以两种和三个体haldane伪电势来构建一种模型的hamiltonian,可以正好为准霍尔斯和准粒子求解,并为后者提供了非亚伯统计的证据。该模型的准粒子状态的结构与具有最低Landau水平投影的准粒子的两部分复合 - 特里米模型所预测的结构一致。我们进一步证明了基态,普通的中性激发和拓扑激发的绝热连续性,因为我们将模型汉密尔顿人不断地变形为最低的Landau级级$ \ hat {v}^\ text {pf} _3 _3 $ hamiltonian。

Particles obeying non-Abelian braid statistics have been predicted to emerge in the fractional quantum Hall effect. In particular, a model Hamiltonian with short-range three-body interaction ($\hat{V}^\text{Pf}_3$) between electrons confined to the lowest Landau level provides exact solutions for quasiholes, and thereby allows a proof of principle for the existence of quasiholes obeying non-Abelian braid statistics. We construct, in terms of two- and three- body Haldane pseudopotentials, a model Hamiltonian that can be solved exactly for both quasiholes and quasiparticles, and provide evidence of non-Abelian statistics for the latter as well. The structure of the quasiparticle states of this model is in agreement with that predicted by the bipartite composite-fermion model of quasiparticles with exact lowest Landau level projection. We further demonstrate adiabatic continuity for the ground state, the ordinary neutral excitation, and the topological exciton as we deform our model Hamiltonian continuously into the lowest Landau-level $\hat{V}^\text{Pf}_3$ Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源