论文标题
部分可观测时空混沌系统的无模型预测
Finding Control Synthesis for Kinematic Shortest Paths
论文作者
论文摘要
这项工作介绍了对刚体系统最短路径控制合成的特性的分析。我们在这项工作中关注的系统仅具有运动学约束。但是,即使对于看似简单的系统和约束,最近才发现通用刚体系统的最短路径,尤其是对于3D系统。基于Pontraygon的最大原理(MPM)和Lagrange方程,我们提供了最佳开关的必要条件,这些条件形成了控制综合边界。我们正式表明,附近配置的最短路径将具有相似的伴随函数和参数,即Lagrange乘数。我们进一步表明,必要条件方程的梯度可用于验证配置是在控制合成区域内还是在边界上。我们提出了一个程序,可以使用控制约束的梯度找到最短的运动学路径和控制合成。给定最短路径和相应的控制序列,可以在且仅当它们属于同一控制合成区域时才能得出附近配置的最佳控制序列。提出的程序可以适用于2D和3D刚体系统。我们使用2D Dubins车辆系统来验证所提出的方法的正确性。这项工作的扩展将提出更多的验证和实验。
This work presents the analysis of the properties of the shortest path control synthesis for the rigid body system. The systems we focus on in this work have only kinematic constraints. However, even for seemingly simple systems and constraints, the shortest paths for generic rigid body systems were only found recently, especially for 3D systems. Based on the Pontraygon's Maximum Principle (MPM) and Lagrange equations, we present the necessary conditions for optimal switches, which form the control synthesis boundaries. We formally show that the shortest path for nearby configurations will have similar adjoint functions and parameters, i.e., Lagrange multipliers. We further show that the gradients of the necessary condition equation can be used to verify whether a configuration is inside a control synthesis region or on the boundary. We present a procedure to find the shortest kinematic paths and control synthesis, using the gradients of the control constraints. Given the shortest path and the corresponding control sequences, the optimal control sequence for nearby configurations can be derived if and only if they belong to the same control synthesis region. The proposed procedure can work for both 2D and 3D rigid body systems. We use a 2D Dubins vehicle system to verify the correctness of the proposed approach. More verifications and experiments will be presented in the extensions of this work.