论文标题

神经可变形体素网格,用于快速优化动态视图合成

Neural Deformable Voxel Grid for Fast Optimization of Dynamic View Synthesis

论文作者

Guo, Xiang, Chen, Guanying, Dai, Yuchao, Ye, Xiaoqing, Sun, Jiadai, Tan, Xiao, Ding, Errui

论文摘要

最近,神经辐射场(NERF)正在彻底改变新型视图合成(NVS)的卓越性能。在本文中,我们建议综合动态场景。将静态场景的方法扩展到动态场景并不简单,因为场景几何形状和外观随着时间的流逝而变化,尤其是在单眼设置下。同样,现有的动态NERF方法通常需要进行冗长的每场训练程序,其中多层感知器(MLP)适合模拟运动和辐射。在本文中,基于素素网格优化的最新进展,我们提出了一种快速变形的辐射场方法来处理动态场景。我们的方法由两个模块组成。第一个模块采用变形网格来存储3D动态特征,以及使用插值功能将观测空间中的3D点映射到规范空间的变形的轻巧MLP。第二个模块包含密度和颜色网格,以建模场景的几何形状和密度。明确对阻塞进行了建模,以进一步提高渲染质量。实验结果表明,我们的方法仅使用20分钟的训练就可以实现与D-NERF相当的性能,该训练比D-NERF快70倍以上,这清楚地证明了我们提出的方法的效率。

Recently, Neural Radiance Fields (NeRF) is revolutionizing the task of novel view synthesis (NVS) for its superior performance. In this paper, we propose to synthesize dynamic scenes. Extending the methods for static scenes to dynamic scenes is not straightforward as both the scene geometry and appearance change over time, especially under monocular setup. Also, the existing dynamic NeRF methods generally require a lengthy per-scene training procedure, where multi-layer perceptrons (MLP) are fitted to model both motions and radiance. In this paper, built on top of the recent advances in voxel-grid optimization, we propose a fast deformable radiance field method to handle dynamic scenes. Our method consists of two modules. The first module adopts a deformation grid to store 3D dynamic features, and a light-weight MLP for decoding the deformation that maps a 3D point in the observation space to the canonical space using the interpolated features. The second module contains a density and a color grid to model the geometry and density of the scene. The occlusion is explicitly modeled to further improve the rendering quality. Experimental results show that our method achieves comparable performance to D-NeRF using only 20 minutes for training, which is more than 70x faster than D-NeRF, clearly demonstrating the efficiency of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源