论文标题
认知深度学习
Epistemic Deep Learning
论文作者
论文摘要
在demspter-shafer证据理论中提出的不确定性量化的信念函数方法是基于对集合值观测的一般数学模型,称为随机集。设定值的预测是机器学习中不确定性的最自然表示。在本文中,我们介绍了一个基于对信仰功能的随机解释的概念,称为认识论深度学习,以模拟深度神经网络中的认知学习。我们提出了一个新型的随机卷积神经网络,用于分类,该网络通过学习设定值的地面真实表示来为一组类别产生分数。我们评估信仰功能的熵和距离度量的不同公式,作为这些随机集网络的可行损失函数。我们还讨论了评估认知预测质量和认知随机神经网络的表现的方法。我们通过实验证明,与传统的估计不确定性相比,认知方法可以产生更好的性能结果。
The belief function approach to uncertainty quantification as proposed in the Demspter-Shafer theory of evidence is established upon the general mathematical models for set-valued observations, called random sets. Set-valued predictions are the most natural representations of uncertainty in machine learning. In this paper, we introduce a concept called epistemic deep learning based on the random-set interpretation of belief functions to model epistemic learning in deep neural networks. We propose a novel random-set convolutional neural network for classification that produces scores for sets of classes by learning set-valued ground truth representations. We evaluate different formulations of entropy and distance measures for belief functions as viable loss functions for these random-set networks. We also discuss methods for evaluating the quality of epistemic predictions and the performance of epistemic random-set neural networks. We demonstrate through experiments that the epistemic approach produces better performance results when compared to traditional approaches of estimating uncertainty.