论文标题

部分可观测时空混沌系统的无模型预测

KE-QI: A Knowledge Enhanced Article Quality Identification Dataset

论文作者

Ai, Chunhui, Wang, Derui, Yan, Xu, Xu, Yang, Xie, Wenrui, Cao, Ziqiang

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

With so many articles of varying qualities being produced every moment, it is a very urgent task to screen outstanding articles and commit them to social media. To our best knowledge, there is a lack of datasets and mature research works in identifying high-quality articles. Consequently, we conduct some surveys and finalize 7 objective indicators to annotate the quality of 10k articles. During annotation, we find that many characteristics of high-quality articles (e.g., background) rely more on extensive external knowledge than inner semantic information of articles. In response, we link extracted article entities to Baidu Encyclopedia, then propose Knowledge Enhanced article Quality Identification (KE-QI) dataset. To make better use of external knowledge, we propose a compound model which fuses the text and external knowledge information via a gate unit to classify the quality of an article. Our experimental results on KE-QI show that with initialization of our pre-trained Node2Vec model, our model achieves about 78\% $F_1$, outperforming other baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源