论文标题
非线性单数漂移和分数操作员
Non Linear Singular Drifts and Fractional Operators
论文作者
论文摘要
我们考虑与非线性单数一阶术语漂移的分数运算符相关的抛物线PDE。当漂移在适当的Lebesgue和Besov空间中具有一些有限的特性时,我们通过利用先验的BESOV类型估计来建立,解决方案的H {Ö} lder连续性。特别是,我们处理整个普遍性的几乎关键案例。
We consider parabolic PDEs associated with fractional type operators drifted by non-linear singular first order terms. When the drift enjoys some boundedness properties in appropriate Lebesgue and Besov spaces, we establish by exploiting a priori Besov-type estimates, the H{ö}lder continuity of the solutions. In particular, we handle the almost critical case in whole generality.