论文标题
一个适合地形的混合网络框架,以模拟大气边界层流动
A hybrid meshing framework adapted to the topography to simulate Atmospheric Boundary Layer flows
论文作者
论文摘要
提出了一个新的地形适应网状生成过程,以模拟大气边界层(ABL)在复杂的地形上流动。中间人是全自动的:最大和最小的表面网格大小,边界层的第一个元素的大小,边界层中的最大尺寸和域顶部的大小。进行了以下对ABL流量模拟的网络工作流程的贡献。首先,我们为查询一阶和二阶几何衍生物提供平滑的地形建模。其次,我们提出了一种新的自适应网格划分程序,以基于两个不同的指标来离散地形。第三,出现了Abl Mesher,既有棱镜和四面体。我们挤出了适应的表面网格的三角形,产生了重现表面边界层的棱镜。然后,将其余的域与非结构化的四面体网啮合。此外,对于表面和音量网格,我们详细介绍了混合质量优化方法,分析了其对求解器对高复杂地形的影响。我们分析了三角自适应方法的收敛性,获得了二次收敛到几何形状,并将误差降低到一半的自由度,而没有适应性和优化。我们还研究了我们的兰率求解器的网格收敛,从而获得了二次网格收敛到溶液,并使用了30%的自由度,同时减少了标准半结构化方法的20%的误差。最后,我们为完整的复杂地形方案提供了生成的网格和仿真结果。
A new topography adapted mesh generation process tailored to simulate Atmospheric Boundary Layer (ABL) flows on complex terrains is presented. The mesher is fully automatic given: the maximum and minimum surface mesh size, the size of the first element of the boundary layer, the maximum size in the boundary layer and the size at the top of the domain. The following contributions to the meshing workflow for ABL flow simulation are performed. First, we present a smooth topography modeling to query first and second order geometry derivatives. Second, we propose a new adaptive meshing procedure to discretize the topography based on two different metrics. Third, the ABL mesher is presented, featuring both prisms and tetrahedra. We extrude the triangles of the adapted surface mesh, generating prisms that reproduce the Surface Boundary Layer. Then, the rest of the domain is meshed with an unstructured tetrahedral mesh. In addition, for both the surface and volume meshers we detail a hybrid quality optimization approach, analyzing its impact on the solver for high-complexity terrains. We analyze the convergence of the triangle adaptive approach, obtaining quadratic convergence to the geometry and reducing to one half the error for the same amount of degrees of freedom than without adaptivity and optimization. We also study the mesh convergence of our RANS solver, obtaining quadratic mesh convergence to the solution, and using a 30% of the degrees of freedom while reducing a 20% of the error of standard semi-structured approaches. Finally, we present the generated meshes and the simulation results for a complete complex topographic scenario.