论文标题
基于区块链的工业元学习的联合学习:具有最佳AOI的激励计划
Blockchain-based Federated Learning for Industrial Metaverses: Incentive Scheme with Optimal AoI
论文作者
论文摘要
新兴的工业荟萃分析实现了物理行业向虚拟空间的映射和扩展,以显着升级智能制造。工业荟萃分析从工业互联网(IIOT)中获取各种生产和运营线的数据,从而进行有效的数据分析和决策,从而提高了物理空间的生产效率,降低运营成本并最大化商业价值。但是,将元元素集成到IIT中时仍然存在瓶颈,例如,敏感数据与商业秘密的隐私泄漏,IIOT感应数据新鲜度以及共享这些数据的激励措施。在本文中,我们设计了一个用户定义的隐私保护框架,该框架通过分散的工业元学习为中心化的联合学习。为了进一步改善工业元元的隐私保护,通过层次和虚拟空间,通过主链和多个子链对物理和虚拟空间进行分散,安全和隐私的数据培训,进一步利用了跨链授权联合学习框架。此外,我们将信息的年龄作为数据新鲜度度量介绍,从而设计了基于年龄的合同模型,以激励IIOT节点之间的数据感知。数值结果表明工业元元素中提出的框架和激励机制的效率。
The emerging industrial metaverses realize the mapping and expanding operations of physical industry into virtual space for significantly upgrading intelligent manufacturing. The industrial metaverses obtain data from various production and operation lines by Industrial Internet of Things (IIoT), and thus conduct effective data analysis and decision-making, thereby enhancing the production efficiency of the physical space, reducing operating costs, and maximizing commercial value. However, there still exist bottlenecks when integrating metaverses into IIoT, such as the privacy leakage of sensitive data with commercial secrets, IIoT sensing data freshness, and incentives for sharing these data. In this paper, we design a user-defined privacy-preserving framework with decentralized federated learning for the industrial metaverses. To further improve privacy protection of industrial metaverse, a cross-chain empowered federated learning framework is further utilized to perform decentralized, secure, and privacy-preserving data training on both physical and virtual spaces through a hierarchical blockchain architecture with a main chain and multiple subchains. Moreover, we introduce the age of information as the data freshness metric and thus design an age-based contract model to motivate data sensing among IIoT nodes. Numerical results indicate the efficiency of the proposed framework and incentive mechanism in the industrial metaverses.