论文标题

将双方图缩入小周期的复杂性

The Complexity of Contracting Bipartite Graphs into Small Cycles

论文作者

Krithika, R., Sharma, Roohani, Tale, Prafullkumar

论文摘要

对于一个正整数$ \ ell \ geq 3 $,$ c_ \ ell $ - 可交解性问题是输入无方向的简单图$ g $,并确定是否只能使用Edge Crossistions使用$ \ ell $ dertices的$ c_ \ ell $转换为$ c_ \ ell $($ \ ell $ vertices上的诱导循环)。 Brouwer和Veldman [JGT 1987]表明,在一般图中,$ C_4 $ - 收集性是NP的完整性。很容易验证$ c_3 $ - 收缩性是多项式时间可解决的。 Dabrowski和Paulusma [IPL 2017]表明,$ c _ {\ ell} $ - 合同性是\ np-complete \ in tiptite graphs for $ \ ell = 6 $ = 6 $ = 6 $,并作为开放问题所构成的问题是$ \ ell $ $ $ $ $ 4或5的问题。图。

For a positive integer $\ell \geq 3$, the $C_\ell$-Contractibility problem takes as input an undirected simple graph $G$ and determines whether $G$ can be transformed into a graph isomorphic to $C_\ell$ (the induced cycle on $\ell$ vertices) using only edge contractions. Brouwer and Veldman [JGT 1987] showed that $C_4$-Contractibility is NP-complete in general graphs. It is easy to verify that $C_3$-Contractibility is polynomial-time solvable. Dabrowski and Paulusma [IPL 2017] showed that $C_{\ell}$-Contractibility is \NP-complete\ on bipartite graphs for $\ell = 6$ and posed as open problems the status of the problem when $\ell$ is 4 or 5. In this paper, we show that both $C_5$-Contractibility and $C_4$-Contractibility are NP-complete on bipartite graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源