论文标题
完成$ c_2 $完成的猜想,$ p = 2 $
Completing the $c_2$ completion conjecture for $p=2$
论文作者
论文摘要
$ c_2 $ invariant是一个算术图不变的,可用于理解feynman时期。 Brown和Schnetz猜想$ C_2 $ -Invariant具有特定的对称性,称为完成不变性。本文将证明$ c_2 $ invariant在$ p = 2 $案例中的完成不变性,从而扩大了我们一个人的先前工作。这些方法是组合和枚举,涉及计算图表边缘的某些分区。
The $c_2$-invariant is an arithmetic graph invariant useful for understanding Feynman periods. Brown and Schnetz conjectured that the $c_2$-invariant has a particular symmetry known as completion invariance. This paper will prove completion invariance of the $c_2$-invariant in the $p=2$ case, extending previous work of one of us. The methods are combinatorial and enumerative involving counting certain partitions of the edges of the graph.