论文标题

大多数,至少是紧凑的跨越图的树

Most, And Least, Compact Spanning Trees of a Graph

论文作者

Ranjan, Gyan, Saurabh, Nishant, Ashutosh, Amit

论文摘要

我们介绍了大多数,至少,紧凑的跨越树的概念 - 分别用$ t^*(g)$和$ t^\#(g)$表示,简单,连接,未向上和未加权的图形$ g(v,e,w)$。对于一个跨度的树$ t(g)\ in \ mathcal {t}(g)$,要被认为是$ t^*(g)$,其中$ \ nathcal {t}(g)$代表图$ g $的所有跨越树的集合,它一定具有平均inter-vertex对(较短的路径)距离(最较短的路径)的距离$ $ $ $ $ a $ c $ a $ cant $ cant $ c \ n c \ n c。同样,要将其视为$ t^\#(g)$,它必须具有最高的平均vertex对(最短路径)距离。在这项工作中,我们提出了一种迭代贪婪的排名方法,该方法通过消除每次迭代的一个极端边缘来产生至少一个$ t^*(g)$或$ t^\#(g)$。执行消除的等级函数是基于图和相关森林距离的相对森林可访问性矩阵的元素。我们提供了使用一些标准图家族来支持我们方法的经验证据:完整的图,Erdős-Renyi随机图和Barabási-Albert无标度图;并讨论产生多项式时间成本的基本方法的计算复杂性。

We introduce the concept of Most, and Least, Compact Spanning Trees - denoted respectively by $T^*(G)$ and $T^\#(G)$ - of a simple, connected, undirected and unweighted graph $G(V, E, W)$. For a spanning tree $T(G) \in \mathcal{T}(G)$ to be considered $T^*(G)$, where $\mathcal{T}(G)$ represents the set of all the spanning trees of the graph $G$, it must have the least average inter-vertex pair (shortest path) distances from amongst the members of the set $\mathcal{T}(G)$. Similarly, for it to be considered $T^\#(G)$, it must have the highest average inter-vertex pair (shortest path) distances. In this work, we present an iteratively greedy rank-and-regress method that produces at least one $T^*(G)$ or $T^\#(G)$ by eliminating one extremal edge per iteration. The rank function for performing the elimination is based on the elements of the matrix of relative forest accessibilities of a graph and the related forest distance. We provide empirical evidence in support of our methodology using some standard graph families: complete graphs, the Erdős-Renyi random graphs and the Barabási-Albert scale-free graphs; and discuss computational complexity of the underlying methods which incur polynomial time costs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源