论文标题
在积极特征上平滑代数表面上的叶子
Foliations on smooth algebraic surfaces over positive characteristic
论文作者
论文摘要
我们调查了$ p $ divisor的概念,用于在积极特征$ p $的领域定义的平滑代数表面上的叶子,我们研究了它们的某些属性。我们提出了一个$ p $ divisor的结构定理,在投影平面和内姆布鲁克表面中,我们表明,在某些条件下,这种$ p $ - 派的人会减少。
We investigate the notion of the $p$-divisor for foliations on a smooth algebraic surface defined over a field of positive characteristic $p$ and we study some of their properties. We present a structure theorem for the $p$-divisor of foliations in the projective plane and the Hirzebruch surfaces where we show that, under certain conditions, such $p$-divisors are reduced.