论文标题

从自动生成的分段地图监视城市森林

Monitoring Urban Forests from Auto-Generated Segmentation Maps

论文作者

Albrecht, Conrad M, Liu, Chenying, Wang, Yi, Klein, Levente, Zhu, Xiao Xiang

论文摘要

我们介绍并评估了一种弱监督的方法,以基于与零接近人类相互作用的远程感知的数据来量化城市森林的时空分布。成功训练语义细分的机器学习模型通常取决于高质量标签的可用性。我们评估高分辨率,三维点云数据(LIDAR)的好处,作为嘈杂标签的来源,以便训练模型以在正吞原中定位。作为概念证明,我们感觉到桑迪飓风对纽约市康尼岛(NYC)的城市森林的影响,并将其引用到纽约布鲁克林的影响较小的城市空间。

We present and evaluate a weakly-supervised methodology to quantify the spatio-temporal distribution of urban forests based on remotely sensed data with close-to-zero human interaction. Successfully training machine learning models for semantic segmentation typically depends on the availability of high-quality labels. We evaluate the benefit of high-resolution, three-dimensional point cloud data (LiDAR) as source of noisy labels in order to train models for the localization of trees in orthophotos. As proof of concept we sense Hurricane Sandy's impact on urban forests in Coney Island, New York City (NYC) and reference it to less impacted urban space in Brooklyn, NYC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源