论文标题
黎曼随机近似算法
Riemannian stochastic approximation algorithms
论文作者
论文摘要
我们研究了在Riemannian歧管上解决(随机)非线性问题的广泛随机近似算法。这种算法自然出现在Riemannian优化,游戏理论和最佳运输的研究中,但是与欧几里得案例相比,它们的行为知之甚少,因为该案例缺乏歧管上的全球线性结构。我们通过引入合适的费米坐标框架来克服这一困难,该坐标使我们能够将正在研究的Riemannian Robbins-Monro(RRM)算法的渐近行为绘制为相关的确定性动力学系统的渐近行为。这样一来,我们提供了一个几乎肯定的收敛结果的一般模板,尽管由于基础歧管的曲率和拓扑而产生了显着的并发症,但镜像并扩展了欧几里得robbins-Monro方案的现有理论。我们通过将其应用于流行的乐观 /额外梯度方法来解决最小化问题和游戏的一系列基于缩回的变体中,展示了提出的框架的灵活性,我们为它们的收敛提供了统一的处理。
We examine a wide class of stochastic approximation algorithms for solving (stochastic) nonlinear problems on Riemannian manifolds. Such algorithms arise naturally in the study of Riemannian optimization, game theory and optimal transport, but their behavior is much less understood compared to the Euclidean case because of the lack of a global linear structure on the manifold. We overcome this difficulty by introducing a suitable Fermi coordinate frame which allows us to map the asymptotic behavior of the Riemannian Robbins-Monro (RRM) algorithms under study to that of an associated deterministic dynamical system. In so doing, we provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes, despite the significant complications that arise due to the curvature and topology of the underlying manifold. We showcase the flexibility of the proposed framework by applying it to a range of retraction-based variants of the popular optimistic / extra-gradient methods for solving minimization problems and games, and we provide a unified treatment for their convergence.