论文标题

某些无扭转的可溶解组,很少

Some torsion-free solvable groups with few subquotients

论文作者

Boudec, Adrien Le, Bon, Nicolás Matte

论文摘要

我们构建了有限生成的无扭转的可解决方案$ g $,这些$ g $具有无限的排名,但所有有限生成的无扭转的metabelian subsecortiations $ g $的亚果实实际上都是Abelian。特别是所有有限生成的$ G $的Metabelian子组几乎都是Abelian。此类组的存在表明,P。Kropholler的定理没有“无扭转版本”,该定理通过其Metabelian亚贵族来表征可解决的无限等级组。

We construct finitely generated torsion-free solvable groups $G$ that have infinite rank, but such that all finitely generated torsion-free metabelian subquotients of $G$ are virtually abelian. In particular all finitely generated metabelian subgroups of $G$ are virtually abelian. The existence of such groups shows that there is no "torsion-free version" of P. Kropholler's theorem, which characterises solvable groups of infinite rank via their metabelian subquotients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源