论文标题

带有几个顶点的圆环和克莱因瓶上的2 semi equivelar地图

2-semi-equivelar maps on the torus and Klein bottle with few vertices

论文作者

Tiwari, Anand Kumar, Singh, Yogendra, Tripathi, Amit

论文摘要

$ k $ -semi Equivelar Maps以$ k \ geq 2 $,是约翰逊固体表面上的地图概括到2个球员以外的封闭表面。在本研究中,我们在圆环和klein瓶上详尽地确定了曲率0的2间e骨图。此外,我们对表面上的所有这些2-semi Equivelar图进行了分类(直至同构),最多有12个顶点。

The $k$-semi equivelar maps, for $k \geq 2$, are generalizations of maps on the surfaces of Johnson solids to closed surfaces other than the 2-sphere. In the present study, we determine 2-semi equivelar maps of curvature 0 exhaustively on the torus and the Klein bottle. Furthermore, we classify (up to isomorphism) all these 2-semi equivelar maps on the surfaces with up to 12 vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源