论文标题

图形神经网络与概率图形模型相交:调查

Graph Neural Networks Intersect Probabilistic Graphical Models: A Survey

论文作者

Hua, Chenqing, Luan, Sitao, Zhang, Qian, Fu, Jie

论文摘要

图是一种强大的数据结构,用于表示关系数据,并广泛用于描述复杂的现实世界数据结构。在过去的几年中,概率图形模型(PGM)已发达,以数学为模拟变量分布的紧凑图形表示现实世界的场景。图神经网络(GNN)是近年来开发的新推论方法,由于其在解决图形结构数据上解决推理和学习问题方面的有效性和灵活性,引起了人们的注意。这两种强大的方法在从观察结果及其传递信息传递中捕获关系方面具有不同的优势,并且它们可以在各种任务中彼此受益。在这项调查中,我们广泛研究了GNN和PGM的交集。具体而言,我们首先讨论GNNS如何从PGMS中的学习结构化表示,通过PGM产生可解释的预测以及PGMS如何推断对象关系。然后,我们讨论如何在PGMS中实施GNN,以进行更有效的推理和结构学习。最后,我们总结了最近研究中使用的基准数据集,并讨论了有希望的未来方向。

Graphs are a powerful data structure to represent relational data and are widely used to describe complex real-world data structures. Probabilistic Graphical Models (PGMs) have been well-developed in the past years to mathematically model real-world scenarios in compact graphical representations of distributions of variables. Graph Neural Networks (GNNs) are new inference methods developed in recent years and are attracting growing attention due to their effectiveness and flexibility in solving inference and learning problems over graph-structured data. These two powerful approaches have different advantages in capturing relations from observations and how they conduct message passing, and they can benefit each other in various tasks. In this survey, we broadly study the intersection of GNNs and PGMs. Specifically, we first discuss how GNNs can benefit from learning structured representations in PGMs, generate explainable predictions by PGMs, and how PGMs can infer object relationships. Then we discuss how GNNs are implemented in PGMs for more efficient inference and structure learning. In the end, we summarize the benchmark datasets used in recent studies and discuss promising future directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源