论文标题
x_0(n)上的两个算术siegel-weil公式
A genus two arithmetic Siegel-Weil formula on X_0(N)
论文作者
论文摘要
我们在模块化曲线x_0(n)的算术杂志组中定义了一个算术零循环,对于n> 3奇数和方形,并识别这些周期的算术度作为Q-coefficients,它是Siegel Eisenstein系列二属的Q-Coefficients。这种相似的kudla-ropoport-yang的作品用于Shimura曲线。
We define a family of arithmetic zero cycles in the arithmetic Chow group of a modular curve X_0(N), for N>3 odd and squarefree, and identify the arithmetic degrees of these cycles as q-coefficients of the central derivative of a Siegel Eisenstein series of genus two. This parallels work of Kudla-Rapoport-Yang for Shimura curves.