论文标题

一种概率的机器学习方法,用于通过贝叶斯优化调度并行循环

A Probabilistic Machine Learning Approach to Scheduling Parallel Loops with Bayesian Optimization

论文作者

Kim, Kyurae, Kim, Youngjae, Park, Sungyong

论文摘要

本文提出贝叶斯优化增强了分解自我安排(BO FSS),这是一种新的并行循环调度策略。 BO FSS是分解自我安排(FSS)算法的自动调整变体,并且基于贝叶斯优化(BO),即黑盒优化算法。它的核心思想是通过使用BO解决优化问题来自动调整FSS的内部参数。调整过程仅需要在线执行时间测量目标循环。为了应用BO,我们使用两个高斯进程(GP)概率机器学习模型对执行时间进行建模。值得注意的是,我们提出了一种局部感知的GP模型,该模型假设时间局部性效应类似于指数下降的函数。通过准确建模时间位置效应,我们的区域感知的GP模型可以加速BO的收敛性。我们对OpenMP标准的GCC实施实施了BO FSS,并根据其他调度算法评估了其性能。另外,为了量化我们的方法在不同工作负载上的性能变化,或者用我们的术语量化工作负载,我们衡量了Minimax的遗憾。根据Minimax的遗憾,BO FSS比其他算法表现出更一致的性能。在考虑的工作负载中,BO FSS平均将FSS的执行时间提高了22%和5%。

This paper proposes Bayesian optimization augmented factoring self-scheduling (BO FSS), a new parallel loop scheduling strategy. BO FSS is an automatic tuning variant of the factoring self-scheduling (FSS) algorithm and is based on Bayesian optimization (BO), a black-box optimization algorithm. Its core idea is to automatically tune the internal parameter of FSS by solving an optimization problem using BO. The tuning procedure only requires online execution time measurement of the target loop. In order to apply BO, we model the execution time using two Gaussian process (GP) probabilistic machine learning models. Notably, we propose a locality-aware GP model, which assumes that the temporal locality effect resembles an exponentially decreasing function. By accurately modeling the temporal locality effect, our locality-aware GP model accelerates the convergence of BO. We implemented BO FSS on the GCC implementation of the OpenMP standard and evaluated its performance against other scheduling algorithms. Also, to quantify our method's performance variation on different workloads, or workload-robustness in our terms, we measure the minimax regret. According to the minimax regret, BO FSS shows more consistent performance than other algorithms. Within the considered workloads, BO FSS improves the execution time of FSS by as much as 22% and 5% on average.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源