论文标题

Sparseneus:从稀疏视图中快速概括的神经表面重建

SparseNeuS: Fast Generalizable Neural Surface Reconstruction from Sparse Views

论文作者

Long, Xiaoxiao, Lin, Cheng, Wang, Peng, Komura, Taku, Wang, Wenping

论文摘要

我们介绍了Sparseneus,这是一种基于神经渲染的新方法,用于从多视图图像中进行表面重建的任务。当仅提供稀疏图像作为输入时,这种任务变得更加困难,这种情况通常会产生不完整或失真的结果。此外,他们无法概括看不见的新场景会阻碍他们在实践中的应用。相反,Sparseneus可以概括为新场景,并与稀疏图像(少于2或3)搭配得很好。 Sparseneus采用签名的距离函数(SDF)作为表面表示,并通过引入编码量的几何形状来从图像特征中学习可通用的先验,以进行通用表面预测。此外,引入了几种策略,以有效利用稀疏视图来进行高质量重建,包括1)多层几何推理框架以粗到5的方式恢复表面; 2)一种多尺度的颜色混合方案,以进行更可靠的颜色预测; 3)一种一致性意识的微调方案,以控制由遮挡和噪声引起的不一致区域。广泛的实验表明,我们的方法不仅胜过最先进的方法,而且表现出良好的效率,可推广性和灵活性。

We introduce SparseNeuS, a novel neural rendering based method for the task of surface reconstruction from multi-view images. This task becomes more difficult when only sparse images are provided as input, a scenario where existing neural reconstruction approaches usually produce incomplete or distorted results. Moreover, their inability of generalizing to unseen new scenes impedes their application in practice. Contrarily, SparseNeuS can generalize to new scenes and work well with sparse images (as few as 2 or 3). SparseNeuS adopts signed distance function (SDF) as the surface representation, and learns generalizable priors from image features by introducing geometry encoding volumes for generic surface prediction. Moreover, several strategies are introduced to effectively leverage sparse views for high-quality reconstruction, including 1) a multi-level geometry reasoning framework to recover the surfaces in a coarse-to-fine manner; 2) a multi-scale color blending scheme for more reliable color prediction; 3) a consistency-aware fine-tuning scheme to control the inconsistent regions caused by occlusion and noise. Extensive experiments demonstrate that our approach not only outperforms the state-of-the-art methods, but also exhibits good efficiency, generalizability, and flexibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源