论文标题

通过研究原型的联合学习,用于基于多中心MRI的前列腺癌的检测

Federated Learning with Research Prototypes for Multi-Center MRI-based Detection of Prostate Cancer with Diverse Histopathology

论文作者

Rajagopal, Abhejit, Redekop, Ekaterina, Kemisetti, Anil, Kulkarni, Rushi, Raman, Steven, Magudia, Kirti, Arnold, Corey W., Larson, Peder E. Z.

论文摘要

对于放射科医生和深度学习算法而言,MRI的早期前列腺癌检测和分期是极具挑战性的任务,但是向大型和多样化数据集学习的潜力仍然是提高其内部和整个诊所的概括能力的有希望的途径。为了对原型阶段算法进行此算法,其中大多数现有研究仍然存在,在本文中,我们引入了一个灵活的联合学习框架,用于跨站点培训,验证和评估深前列腺癌检测算法。我们的方法利用了模型体系结构和数据的抽象表示,该表示允许使用NVFlare联合学习框架进行未经打磨的原型深度学习模型,而无需修改。我们的结果表明,使用专门的神经网络模型以及在加利福尼亚大学两家研究医院收集的专门神经网络模型和不同的前列腺活检数据的前列腺癌检测和分类精度的提高,这表明我们的方法在适应不同数据集并改善MR-Biomarker Discovery的方法方面具有疗效。我们开源的Fltools系统,可以很容易地适应其他深度学习项目进行医学成像。

Early prostate cancer detection and staging from MRI are extremely challenging tasks for both radiologists and deep learning algorithms, but the potential to learn from large and diverse datasets remains a promising avenue to increase their generalization capability both within- and across clinics. To enable this for prototype-stage algorithms, where the majority of existing research remains, in this paper we introduce a flexible federated learning framework for cross-site training, validation, and evaluation of deep prostate cancer detection algorithms. Our approach utilizes an abstracted representation of the model architecture and data, which allows unpolished prototype deep learning models to be trained without modification using the NVFlare federated learning framework. Our results show increases in prostate cancer detection and classification accuracy using a specialized neural network model and diverse prostate biopsy data collected at two University of California research hospitals, demonstrating the efficacy of our approach in adapting to different datasets and improving MR-biomarker discovery. We open-source our FLtools system, which can be easily adapted to other deep learning projects for medical imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源