论文标题

关于最小的戈伦斯坦·希尔伯特的功能

On minimal Gorenstein Hilbert function

论文作者

Bezerra, Lenin, Gondim, Rodrigo, Ilardi, Giovanna, Zappalà, Giuseppe

论文摘要

我们猜想,一类Artinian Gorenstein Hilbert代数称为Full Perazzo代数总是具有最小的Hilbert功能,固定了编辑和长度。我们证明了长度为第四和第五的猜想,以低的编成率。我们还证明了在各个长度和某些编辑中发生的代数的特定子类的猜想。由于我们的方法,我们给出了有关Gorenstein Hilbert函数最小进入的渐近行为的一部分结果的新证明。

We conjecture that a class of Artinian Gorenstein Hilbert algebras called full Perazzo algebras always have minimal Hilbert function, fixing codimension and length. We prove the conjecture in length four and five, in low codimension. We also prove the conjecture for a particular subclass of algebras that occurs in every length and certain codimensions. As a consequence of our methods we give a new proof of part of a known result about the asymptotic behavior of the minimum entry of a Gorenstein Hilbert function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源