论文标题

深度学习的MR图像重新参数化

Deep Learning-Based MR Image Re-parameterization

论文作者

Narang, Abhijeet, Raj, Abhigyan, Pop, Mihaela, Ebrahimi, Mehran

论文摘要

磁共振(MR)图像重新参数化是指通过使用新的MRI扫描参数模拟生成的过程。不同的参数值在不同组织之间产生明显的对比度,有助于鉴定病理组织。通常,诊断需要多次扫描。但是,重复扫描可能是昂贵的,耗时的,对于患者来说很难。因此,使用MR图像重新参数来预测和估计这些成像扫描中的对比是有效的选择。在这项工作中,我们提出了一种基于新颖的深度学习(DL)卷积模型,用于MRI重新参数化。基于我们的初步结果,基于DL的技术具有学习控制重新分析的非线性性的潜力。

Magnetic resonance (MR) image re-parameterization refers to the process of generating via simulations of an MR image with a new set of MRI scanning parameters. Different parameter values generate distinct contrast between different tissues, helping identify pathologic tissue. Typically, more than one scan is required for diagnosis; however, acquiring repeated scans can be costly, time-consuming, and difficult for patients. Thus, using MR image re-parameterization to predict and estimate the contrast in these imaging scans can be an effective alternative. In this work, we propose a novel deep learning (DL) based convolutional model for MRI re-parameterization. Based on our preliminary results, DL-based techniques hold the potential to learn the non-linearities that govern the re-parameterization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源