论文标题
使用加密特征图访问语义分割模型
Access Control of Semantic Segmentation Models Using Encrypted Feature Maps
论文作者
论文摘要
在本文中,我们首次提出了一种使用秘密键的访问控制方法,以便没有秘密密钥的未经授权的用户无法从受过训练的模型的性能中受益。该方法使我们不仅可以为授权的用户提供高分从细分性能,还可以降低未经授权的用户的性能。我们首先指出,对于语义细分的应用,使用加密图像进行分类任务的常规访问控制方法由于性能退化而不直接适用。因此,在本文中,选定的特征图用训练和测试模型的秘密密钥加密,而不是输入图像。在一个实验中,受保护的模型允许授权用户获得与非保护模型的性能几乎相同的性能,并且具有鲁棒性,而无需键入未经授权的访问。
In this paper, we propose an access control method with a secret key for semantic segmentation models for the first time so that unauthorized users without a secret key cannot benefit from the performance of trained models. The method enables us not only to provide a high segmentation performance to authorized users but to also degrade the performance for unauthorized users. We first point out that, for the application of semantic segmentation, conventional access control methods which use encrypted images for classification tasks are not directly applicable due to performance degradation. Accordingly, in this paper, selected feature maps are encrypted with a secret key for training and testing models, instead of input images. In an experiment, the protected models allowed authorized users to obtain almost the same performance as that of non-protected models but also with robustness against unauthorized access without a key.