论文标题
测试一般相对论:星系簇重力红移的新测量
Testing General Relativity: new measurements of gravitational redshift in galaxy clusters
论文作者
论文摘要
聚类成员星系的特殊速度分布为直接研究星系簇内的重力电位并在Megaparsec尺度上测试重力理论提供了强大的工具。我们利用从斯隆数字天空调查(SDSS)的最新发行版中提取的光谱星系和星系群集样品,以获得重力理论的新约束。我们考虑一个$ 3058 $ GALAXY簇的光谱样品,最高红移为$ 0.5 $。我们分析了簇成员星系的速度分布,以对星系簇内部的重力红移效应进行新的测量。我们准确地估算了集群中心,将它们计算为最接近星系星系的角位置和红移的平均值。我们发现,该中心定义可以更好地估计集群重力电位井的中心,相对于过去的文献中所做的那样,仅假设最明亮的聚类星系为群集中心。我们将测量值与三种不同重力理论的理论预测进行了比较:一般相对论(GR),$ f(r)$模型和DVALI-GABADADZE-PORRATI(DGP)模型。使用新的统计程序来拟合测得的重力红移信号,从而区分所考虑的重力理论。最后,我们研究了可能影响分析的系统不确定性。我们清楚地检测到被剥削的群集成员目录中的重力红移效应。我们恢复了$ -11.4 \ pm 3.3 $ km s $^{ - 1} $的集成重力红移信号,该信号在错误中与过去的文献作品一致。总体而言,我们的结果与GR和DGP预测都一致,而它们与所考虑的$ F(R)$强场模型的预测处于边缘分歧。
The peculiar velocity distribution of cluster member galaxies provides a powerful tool to directly investigate the gravitational potentials within galaxy clusters and to test the gravity theory on megaparsec scales. We exploit spectroscopic galaxy and galaxy cluster samples extracted from the latest releases of the Sloan Digital Sky Survey (SDSS) to derive new constraints on the gravity theory. We consider a spectroscopic sample of $3058$ galaxy clusters, with a maximum redshift of $0.5$. We analyse the velocity distribution of the cluster member galaxies to make new measurements of the gravitational redshift effect inside galaxy clusters. We accurately estimate the cluster centres, computing them as the average of angular positions and redshifts of the closest galaxies to the brightest cluster galaxies. We find that this centre definition provides a better estimation of the centre of the cluster gravitational potential wells, relative to simply assuming the brightest cluster galaxies as the cluster centres, as done in the past literature. We compare our measurements with the theoretical predictions of three different gravity theories: general relativity (GR), the $f(R)$ model, and the Dvali-Gabadadze-Porrati (DGP) model. A new statistical procedure is used to fit the measured gravitational redshift signal and thus to discriminate among the considered gravity theories. Finally, we investigate the systematic uncertainties possibly affecting the analysis. We clearly detect the gravitational redshift effect in the exploited cluster member catalogue. We recover an integrated gravitational redshift signal of $-11.4 \pm 3.3$ km s$^{-1}$, which is in agreement, within the errors, with past literature works. Overall, our results are consistent with both GR and DGP predictions, while they are in marginal disagreement with the predictions of the considered $f(R)$ strong field model.