论文标题

分层材料中高频磁弹性波的计算

Computation of High Frequency Magnetoelastic Waves in Layered Materials

论文作者

Ryskamp, Samuel J., Hoefer, Mark A.

论文摘要

使用有效,准确的计算技术提出了分层介质中磁弹性波分散体的直接计算。分别对弹性和磁性的控制,耦合方程式,Navier和Landau-Lifshitz方程分别是线性的,以形成一个二次特征值问题,该问题决定了复杂的WaveNumber-Freferquency分散分支的复杂网络及其相应的模式。使用光谱搭配方法(SCM)对特征值问题的数值离散化来确定单个有限厚度磁性层和有限的磁性非磁性双层层的完整分散图。 SCM先前用于研究非磁性介质中的弹性波,是快速,准确且适应各种样品构型和几何形状的。重点放在超快速磁性实验中访问的极高频率方案上。色散图和模式提供了有关能量如何通过耦合系统传播的洞察力,包括如何在弹性和磁性波之间以及不同层之间传递能量。单层的数值计算通过在高频,交换为主导的方向上的简化分析计算进一步理解,在这些计算中,确定了能量交换所需的共振条件(一种抗溶剂(一种抗溶剂)),确定了准弹性和准磁性分散分支之间的共振条件。通过分散未耦合的弹性和磁性波的分散,非共振相互作用被证明是很好的近似值。这些方法和结果提供了基本的理论工具,以建模并了解为Spintronic创新提供动力的当前和将来的磁性设备。

The direct calculation of magnetoelastic wave dispersion in layered media is presented using an efficient, accurate computational technique. The governing, coupled equations for elasticity and magnetism, the Navier and Landau-Lifshitz equations, respectively, are linearized to form a quadratic eigenvalue problem that determines a complex web of wavenumber-frequency dispersion branches and their corresponding mode profiles. Numerical discretization of the eigenvalue problem via a spectral collocation method (SCM) is employed to determine the complete dispersion maps for both a single, finite-thickness magnetic layer and a finite magnetic-nonmagnetic double-layer. The SCM, previously used to study elastic waves in non-magnetic media, is fast, accurate, and adaptable to a variety of sample configurations and geometries. Emphasis is placed on the extremely high frequency regimes being accessed in ultrafast magnetism experiments. The dispersion maps and modes provide insight into how energy propagates through the coupled system, including how energy can be transferred between elastic- and magnetic-dominated waves as well as between different layers. The numerical computations for a single layer are further understood by a simplified analytical calculation in the high-frequency, exchange-dominated regime where the resonance condition required for energy exchange (an anticrossing) between quasi-elastic and quasi-magnetic dispersion branches is determined. Nonresonant interactions are shown to be well approximated by the dispersion of uncoupled elastic and magnetic waves. The methods and results provide fundamental theoretical tools to model and understand current and future magnetic devices powering spintronic innovation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源