论文标题

功能吸引的多元化重新排列,并具有分离的表示形式以进行相关建议

Feature-aware Diversified Re-ranking with Disentangled Representations for Relevant Recommendation

论文作者

Lin, Zihan, Wang, Hui, Mao, Jingshu, Zhao, Wayne Xin, Wang, Cheng, Jiang, Peng, Wen, Ji-Rong

论文摘要

相关建议是一种特殊的建议方案,当用户表达对一个目标项目的兴趣(例如,单击,喜欢和购买)时,可以提供相关项目。除了考虑建议和触发项目之间的相关性外,建议还应多样化以避免信息茧。但是,现有的多元化推荐方法主要集中于项目级别的多样性,而当推荐的项目与目标项目相关时,这是不够的。此外,冗余或嘈杂的项目功能可能会影响简单的功能吸引推荐方法的性能。面对这些问题,我们提出了一个功能分离的自平衡重新排列框架(FDSB),以捕获功能吸引的多样性。该框架由两个主要模块组成,分别是解开的注意编码器(DAE)和自平衡的多光谱排名。在DAE中,我们使用多头关注来从丰富的项目功能中学习分离的方面。在排名中,我们开发了一种特定方面的排名机制,能够适应每个方面的相关性和多样性。在实验中,我们对收集到的数据集进行了离线评估,并在Kuaishou应用程序上部署FDSB,以在线A/B测试相关建议的功能。推荐质量和用户体验的重大改进验证了我们方法的有效性。

Relevant recommendation is a special recommendation scenario which provides relevant items when users express interests on one target item (e.g., click, like and purchase). Besides considering the relevance between recommendations and trigger item, the recommendations should also be diversified to avoid information cocoons. However, existing diversified recommendation methods mainly focus on item-level diversity which is insufficient when the recommended items are all relevant to the target item. Moreover, redundant or noisy item features might affect the performance of simple feature-aware recommendation approaches. Faced with these issues, we propose a Feature Disentanglement Self-Balancing Re-ranking framework (FDSB) to capture feature-aware diversity. The framework consists of two major modules, namely disentangled attention encoder (DAE) and self-balanced multi-aspect ranker. In DAE, we use multi-head attention to learn disentangled aspects from rich item features. In the ranker, we develop an aspect-specific ranking mechanism that is able to adaptively balance the relevance and diversity for each aspect. In experiments, we conduct offline evaluation on the collected dataset and deploy FDSB on KuaiShou app for online A/B test on the function of relevant recommendation. The significant improvements on both recommendation quality and user experience verify the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源