论文标题
不均匀质量关键半波方程的爆炸动力学
Blowup dynamics for inhomogeneous mass critical half-wave equation
论文作者
论文摘要
我们认为在一个维度上焦点不均匀的质量临界半波方程。在不均匀因素的轻度条件下,我们表明存在带有基态质量$ \ | u_0 \ | _2 = \ | q \ | _2 $的径向爆炸解决方案的存在,其中$ q $是公式的独特正状态解决方案$ dq+q = q = q^3 $并获得爆炸费费率^3 $ $ \ | d^{\ frac {1} {2}} u(t)\ | _ {l^2} \ sim \ sim \ frac {1} {| t |} $ as $ t \ nearlrow 0^ - $。
We consider the focusing inhomogeneous mass critical half-wave equation in one dimension. Under the mild conditions of the inhomogeneous factor, we show that the existence of the radial blowup solutions with ground state mass $\|u_0\|_2=\|Q\|_2$, where $Q$ is the unique positive ground state solution of equation $DQ+Q=Q^3$ and obtain the blowup rate $\|D^{\frac{1}{2}}u(t)\|_{L^2}\sim\frac{1}{|t|}$ as $t\nearrow 0^-$.