论文标题

使用两阶段的特定触发器增强清洁标签后门攻击

Enhancing Clean Label Backdoor Attack with Two-phase Specific Triggers

论文作者

Luo, Nan, Li, Yuanzhang, Wang, Yajie, Wu, Shangbo, Tan, Yu-an, Zhang, Quanxin

论文摘要

后门攻击威胁着深度神经网络(DNNS)。朝着隐身性的角度来看,研究人员提出了清洁标签的后门攻击,这要求对手不要更改中毒训练数据集的标签。由于正确的图像标签对,清洁标签的设置使攻击更加隐秘,但仍然存在一些问题:首先,传统的中毒训练数据的方法无效;其次,传统的触发器并不是仍然可感知的隐形。为了解决这些问题,我们提出了一种两相和特定图像的触发方法,以增强清洁标签的后门攻击。我们的方法是(1)强大的:我们的触发器都可以同时促进后门攻击中的两个阶段(即后门植入和激活阶段)。 (2)隐身:我们的触发器是从每个图像生成的。它们是特定于图像的而不是固定触发器。广泛的实验表明,我们的方法可以实现奇妙的攻击成功率〜(98.98%),中毒率低(5%),在许多评估指标下高隐身,并且对后门防御方法具有抵抗力。

Backdoor attacks threaten Deep Neural Networks (DNNs). Towards stealthiness, researchers propose clean-label backdoor attacks, which require the adversaries not to alter the labels of the poisoned training datasets. Clean-label settings make the attack more stealthy due to the correct image-label pairs, but some problems still exist: first, traditional methods for poisoning training data are ineffective; second, traditional triggers are not stealthy which are still perceptible. To solve these problems, we propose a two-phase and image-specific triggers generation method to enhance clean-label backdoor attacks. Our methods are (1) powerful: our triggers can both promote the two phases (i.e., the backdoor implantation and activation phase) in backdoor attacks simultaneously; (2) stealthy: our triggers are generated from each image. They are image-specific instead of fixed triggers. Extensive experiments demonstrate that our approach can achieve a fantastic attack success rate~(98.98%) with low poisoning rate~(5%), high stealthiness under many evaluation metrics and is resistant to backdoor defense methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源