论文标题

对具有均匀先验权重的Feynman积分的研究和双重形式对称性的符号学

A study of Feynman integrals with uniform transcendental weights and the symbology from dual conformal symmetry

论文作者

He, Song, Li, Zhenjie, Ma, Rourou, Wu, Zihao, Yang, Qinglin, Zhang, Yang

论文摘要

多环Feynman积分是高能现象学中高阶校正计算的关键对象。这些具有多个尺度的积分可能具有复杂的符号结构。我们表明,双形状对称性在多环Feynman积分的字母和符号结构上亮起。在本文中,首先,作为一个尖端的例子,我们基于UT积分的最新发展,得出了具有均匀先验(UT)权重的两环四质量Feynman积分。然后,我们证明,可以通过向无穷大的双重点发送双重相关的双形积分的符号字母从与密切相关的双形式积分的符号字母中得到很好的获得。符号的某些特性,例如前两个条目和扩展的Steinmann关系,也从双共形积分的类似特性中进行了研究。

Multi-loop Feynman integrals are key objects for the high-order correction computations in high energy phenomenology. These integrals with multiple scales, may have complicated symbol structures. We show that the dual conformal symmetry sheds light on the alphabet and symbol structures of multi-loop Feynman integrals. In this paper, first, as a cutting-edge example, we derive the two-loop four-external-mass Feynman integrals with uniform transcendental (UT) weights, based on the latest developments on UT integrals. Then we show that all the symbol letters can be nicely obtained from those of closely-related dual conformal integrals, by sending a dual point to infinity. Certain properties of the symbol such as first two entries and extended Steinmann relations are also studied from analogous properties of dual conformal integrals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源