论文标题

通过利用机器学习朝多光子显微镜进行优化的超局部光谱特性

Optimizing supercontinuum spectro-temporal properties by leveraging machine learning towards multi-photon microscopy

论文作者

Hoang, Van Thuy, Boussafa, Yassin, Sader, Lynn, Février, Sébastien, Couderc, Vincent, Wetzel, Benjamin

论文摘要

多光子显微镜在生物成像中起着重要作用,因为它可以观察到具有改善的穿透深度和出色切片效果的活组织。多光子显微镜依赖于多光子的吸收,从而实现了强烈取决于样品结构,选定的荧光团和激发激光器的特性的不同成像方式。但是,多光子吸收的多功能激光激发仍然是一个挑战,例如典型激光增益培养基的狭窄带宽或通过光学参数振荡器或放大器提供的波长转换的可调性。作为替代方案,超局部生成可以提供从超紫罗兰到远红外域的宽带激发,并整合了许多荧光团吸收峰,从而依次实现不同的成像方式或潜在的多重光谱。在这里,我们报告了使用机器学习来优化超局部生成的光谱性特性,以选择性地增强与多种荧光团(或模态)对多光子显微镜兼容的多光子激发信号。具体而言,我们从数值上探讨了如何轻松利用可重构(飞秒)脉冲模式的使用,以控制高度非线性纤维中发生的非线性传播动力学和相关的光谱拓宽。在此框架中,我们表明使用多个脉冲在播种光纤传播中可以触发各种非线性相互作用和复杂的传播方案。这种方法将时间维度利用为扩展的自由度,用于在所选波长下最大化典型的多光子激发,此处以一种适合成像应用的多功能和可重构方式获得。

Multi-photon microscopy has played a significant role in biological imaging since it allows to observe living tissues with improved penetration depth and excellent sectioning effect. Multi-photon microscopy relies on multi-photon absorption, enabling the use of different imaging modalities that strongly depends on the properties of the sample structure, the selected fluorophore and the excitation laser. However, versatile and tunable laser excitation for multi-photon absorption is still a challenge, limited by e.g. the narrow bandwidth of typical laser gain medium or by the tunability of wavelength conversion offered by optical parametric oscillators or amplifiers. As an alternative, supercontinuum generation can provide broadband excitationspanning from the ultra-violet to far infrared domains and integrating numerous fluorophore absorption peaks, in turn enabling different imaging modalities or potential multiplexed spectroscopy. Here, we report on the use of machine learning to optimize the spectro-temporal properties of supercontinuum generation in order to selectively enhance multi-photon excitation signals compatible with a variety of fluorophores (or modalities) for multi-photon microscopy. Specifically, we numerically explore how the use of reconfigurable (femtosecond) pulse patterns can be readily exploited to control the nonlinear propagation dynamics and associated spectral broadening occurring in a highly-nonlinear fiber. In this framework, we show that the use of multiple pulses to seed optical fiber propagation can trigger a variety of nonlinear interactions and complex propagation scenario. This approach, exploiting the temporal dimension as an extended degree of freedom, is used to maximize typical multi-photon excitations at selected wavelengths, here obtained in a versatile and reconfigurable manner suitable for imaging applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源