论文标题

在原恒星中建模雪地线位置:Protostellar云芯结构的影响

Modeling snowline locations in protostars: The impact of the structure of protostellar cloud cores

论文作者

Murillo, Nadia M., Hsieh, Tien-Hao, Walsh, Catherine

论文摘要

简略 上下文:恒星和磁盘形成过程中的雪线是导致质恒星演化过程中一系列影响的原因,例如设置信封和磁盘的化学成分。反过来,这通过改变固体的元素组成并影响灰尘晶粒的碰撞特性和结果来影响行星的形成。雪线也可以揭示积聚爆发,从而洞悉恒星的形成过程。 方法:数值化学网络,加上圆柱对称物理模型的网格来确定哪些物理参数会改变CO和H $ _2 $ o雪地线位置。研究的参数是CO和H $ _2 $ O的初始分子丰度,结合能,加热源,云核心密度,流出空腔开口角和磁盘几何形状。使用每个参数使用模拟分子线发射图来量化雪地位置的变化。 结论:这项工作中提出的模型表明,CO和H $ _2 $ O O SNOWINE位置不会像通常假定的单个,定义明确的温度下发生。取而代之的是,雪地线位置取决于光度,云核密度以及是否存在磁盘。倾斜度和空间分辨率会影响雪线位置的可观察性和成功测量。我们注意到,n $ _2 $ h $^+$和hco $^+$排放可作为CO和H $ _2 $ o雪线位置的良好观察示踪剂。但是,限制是否存在磁盘,观察其他分子示踪剂以及估计包膜密度将有助于准确确定观察到的雪线位置的原因。提供了N $ _2 $ H $^+$和HCO $^+$峰值排放半径与光度的图,以将模型与旨在测量CO和H $ _2 $ O SNOWLINE位置的深层嵌入式Protostars进行比较。

Abridged Context: Snowlines during star and disk formation are responsible for a range of effects during the evolution of protostars, such as setting the chemical composition of the envelope and disk. This in turn influences the formation of planets by changing the elemental compositions of solids and affecting the collisional properties and outcomes of dust grains. Snowlines can also reveal accretion bursts, providing insight into the formation process of stars. Methods: A numerical chemical network coupled with a grid of cylindrical-symmetric physical models was used to identify what physical parameters alter the CO and H$_2$O snowline locations. The investigated parameters are the initial molecular abundances, binding energies of CO and H$_2$O, heating source, cloud core density, outflow cavity opening angle, and disk geometry. Simulated molecular line emission maps were used to quantify the change in the snowline location with each parameter. Conclusions: The models presented in this work show that the CO and H$_2$O snowline locations do not occur at a single, well-defined temperature as is commonly assumed. Instead, the snowline position depends on luminosity, cloud core density, and whether a disk is present or not. Inclination and spatial resolution affect the observability and successful measurement of snowline locations. We note that N$_2$H$^+$ and HCO$^+$ emission serve as good observational tracers of CO and H$_2$O snowline locations. However, constraints on whether or not a disk is present, the observation of additional molecular tracers, and estimating envelope density will help in accurately determining the cause of the observed snowline position. Plots of the N$_2$H$^+$ and HCO$^+$ peak emission radius versus luminosity are provided to compare the models with observations of deeply embedded protostars aiming to measure the CO and H$_2$O snowline locations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源