论文标题

一般相关量子量子中微子转运

General-Relativistic Quantum-Kinetics Neutrino Transport

论文作者

Nagakura, Hiroki

论文摘要

我们开发了一种新的通用量子 - 量子基因中微子转运代码GRQKNT,用于在六维相空间中非平衡中微子的量子动力学的数值研究。该代码旨在用于中微子转运的本地和全球模拟中,可在核心折叠超新星和二进制中子星星合并中使用。人们普遍认识到,由于风味转化和天体物理现象之间的尺度差异很大,因此全球集体中微子振荡(尤其是快速中微子风味转化率(FFC))需要不可行的计算资源。我们提出了一种解决这个问题的新方法。本文致力于描述GRQKNT的理念,设计和数值实现,并通过许多测试确保了每个模块的正确实现。该代码基于一种离散的SN方法,即平均场量子动力学方程的有限差异实现。传输方程是根据保守的形式主义解决的,我们使用第四阶加权基本上是非振荡方案,并使用四阶TVD runge-kutta时间整合。该运输模块旨在与任意空间合作,目前实施了三个不同的固定空间(Flat Spacetimes,Schwarzschild Black Hole和Kerr Black Hole)。我们的代码还实施了包括中微子排放,吸收和动量交换散射的碰撞项。振荡汉密尔顿由真空,物质和自我互动组成。可以应用两种和三个中微子味的场景。运输,碰撞和振荡模块中的流体速度依赖性也可以通过使用两能网格技术来自我处理,这些技术已经在我们的另一个代码中建立,并具有完整的Boltzmann Neutrino Transport。

We developed a new general-relativistic quantum-kinetics neutrino transport code, GRQKNT, for numerical studies of quantum kinetics of non-equilibrium neutrinos in six-dimensional phase space. This code is intended for use in both local and global simulations of neutrino transport in core-collapse supernova and binary neutron star merger. It has been widely recognized that global simulations of collective neutrino oscillations, in particular fast neutrino-flavor conversions (FFC), require unfeasible computational resources due to large disparity of scales between flavor conversion and astrophysical phenomena. We propose a novel approach to tackle the issue. This paper is devoted to describe the philosophy, design, and numerical implementation of GRQKNT with a number of tests ensuring correct implementation of each module. The code is based on a discrete-ordinate Sn method, finite-difference realization of mean-field quantum kinetic equation. The transport equation is solved based on a conservative formalism, and we use a fifth-order weighted essentially non-oscillatory scheme with fourth-order TVD Runge-Kutta time-integration. The transport module is designed to work with arbitrary spacetimes and currently three different stationary spacetimes (flat spacetime, Schwarzschild black hole, and Kerr black hole) are implemented. The collision term including neutrino emission, absorption, and momentum-exchanged scatterings are also implemented into our code. The oscillation Hamiltonian consists of vacuum, matter, and self-interactions. Both two- and three neutrino-flavor scenarios can be applied. Fluid-velocity dependences in transport-, collision-, and oscillation modules, are also treated self-consistently by using two-energy-grid technique, that has been already established in our another code with full Boltzmann neutrino transport.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源