论文标题

因此(4)二维Dirac Fermions的多政治性

SO(4) multicriticality of two-dimensional Dirac fermions

论文作者

Herbut, Igor F., Scherer, Michael M.

论文摘要

我们研究了(2 + 1) - 维持量的量子性多政治行为,具有八组分的dirac fermions,与两个订单参数的三胞胎耦合,这些参数为dirac群众,并以$(1,0) +(1,0) +(0,1)$表示(4)$ \ simeq $ so(3)$(3)$(3)$(3)$(3)$(3)$ so(3)$(3)$ so(3)$(3)该场理论与蜂窝上的Spin-1/2费米子或$π$ -Flux晶格有关,例如,在一侧,$ S $ - 波超导体和电荷密度波之间的过渡点,另一侧是Néel订单。此类顺序参数的两个三胞胎始终允许另外两个订单参数的共同对,可以将它们完成为五个兼容(抗强制性)顺序的最大组合。我们首先在NAMBU(粒子孔)空间中得出一个单一的转换,该空间将任何两个这样的三胞胎映射到纯粹的绝缘阶参数上。这允许人们考虑一个通用的SO(4)总体上的多政治性描述,而没有任何Nambu加倍。然后,我们继续以$4-ε$时空尺寸为单环订单来得出耦合常数的统计组流量,还允许在So($ n_a $)$ \ times $ so($ n_b $)下转换的更通用的订单参数集。虽然对于玻璃纤维部门的$ n_a = n_b> 2 $,并且随着费米子的脱钩,流量的固定点稳定,而Yukawa耦合到费米子很快就会通过相关的fermion口味数字$ n_f $ $ n_f $在相关范围内通过通用的固定点碰撞消除。这表明在物理案例中,临界行为替换为失控流量$ n_a = n_b = 3 $。还讨论了$ n_a \ neq n_b $的RG流量的结构,当$ n_a = 3 $和$ n_b = 1 $ in $ d = 2+1 $时,有一些非扰动论点有利于脱钩关键点的稳定性。

We study quantum multicritical behavior in a (2+1)-dimensional Gross-Neveu-Yukawa field theory with eight-component Dirac fermions coupled to two triplets of order parameters that act as Dirac masses, and transform as $(1,0) + (0,1)$ representation under the SO(4)$\simeq$SO(3)$\times$SO(3) symmetry group. This field theory is relevant to spin-1/2 fermions on honeycomb or $π$-flux lattices, for example, near the transition points between an $s$-wave superconductor and a charge-density wave, on one side, and Néel order, on the other. Two triplets of such order parameters always allow for a common pair of two other order parameters that would complete them to the maximal set of compatible (anticommuting) orders of five. We first derive a unitary transformation in the Nambu (particle-hole) space which maps any two such triplets, possibly containing some superconducting orders, onto purely insulating order parameters. This allows one to consider a universal SO(4) Gross-Neveu-Yukawa description of the multicriticality without any Nambu doubling. We then proceed to derive the renormalization-group flow of the coupling constants at one-loop order in $4-ε$ space-time dimensions, allowing also a more general set of order parameters transforming under SO($n_a$)$\times$SO($n_b$). While for $n_a=n_b > 2 $ in the bosonic sector and with fermions decoupled there is a stable fixed point of the flow, the Yukawa coupling to fermions quickly leads to its elimination by a generic fixed-point collision in the relevant range of fermion flavor numbers $N_f$. This suggests the replacement of the critical behavior by a runaway flow in the physical case $n_a=n_b=3$. The structure of the RG flow at $n_a\neq n_b$ is also discussed, and some non-perturbative arguments in favor of the stability of the decoupled critical point when $n_a=3$ and $n_b=1$ in $D=2+1$ are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源