论文标题

功能性线性和单索引模型:通过高斯Stein身份的统一方法

Functional linear and single-index models: A unified approach via Gaussian Stein identity

论文作者

Balasubramanian, Krishnakumar, Müller, Hans-Georg, Sriperumbudur, Bharath K.

论文摘要

功能性线性和单个指数模型是功能数据分析中的核心回归方法,当协变量是随机函数与标量响应相结合时,广泛用于在广泛应用中进行回归。然而,在现有文献中,相关估计量的构建及其理论特性的研究总是会逐案进行,以针对所考虑的特定模型进行。在这项工作中,假设预测因子是高斯过程,我们提供了一个统一的方法论和理论框架,用于估计功能线性索引及其在单索引模型中的方向。在后一种情况下,提出的方法不需要链接函数的规范。在方法论方面,我们表明,当通过无限二维高斯Stein的身份的镜头查看时,基于重现的核核Hilbert空间(RKHS)的功能性最小二乘估计器,也提供了单个Index模型索引的估计值。从理论上讲,我们表征了线性和单索引模型所提出的估计器的收敛速率。我们的分析具有几个关键优势:(i)它不需要对随机协变量的协方差运算符和与复制核相关的积分运算符的限制性通勤假设; (ii)真正的索引参数可以位于所选的RKHS之外,从而允许索引错误指定以及量化此类索引错误指定的程度。我们分析的特殊情况出现了一些现有结果。

Functional linear and single-index models are core regression methods in functional data analysis and are widely used for performing regression in a wide range of applications when the covariates are random functions coupled with scalar responses. In the existing literature, however, the construction of associated estimators and the study of their theoretical properties is invariably carried out on a case-by-case basis for specific models under consideration. In this work, assuming the predictors are Gaussian processes, we provide a unified methodological and theoretical framework for estimating the index in functional linear, and its direction in single-index models. In the latter case, the proposed approach does not require the specification of the link function. In terms of methodology, we show that the reproducing kernel Hilbert space (RKHS) based functional linear least-squares estimator, when viewed through the lens of an infinite-dimensional Gaussian Stein's identity, also provides an estimator of the index of the single-index model. Theoretically, we characterize the convergence rates of the proposed estimators for both linear and single-index models. Our analysis has several key advantages: (i) it does not require restrictive commutativity assumptions for the covariance operator of the random covariates and the integral operator associated with the reproducing kernel; and (ii) the true index parameter can lie outside of the chosen RKHS, thereby allowing for index misspecification as well as for quantifying the degree of such index misspecification. Several existing results emerge as special cases of our analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源