论文标题

使用基于神经状的逻辑门基于尖刺的神经网络来构建基于尖峰的记忆

Construction of a spike-based memory using neural-like logic gates based on Spiking Neural Networks on SpiNNaker

论文作者

Ayuso-Martinez, Alvaro, Casanueva-Morato, Daniel, Dominguez-Morales, Juan P., Jimenez-Fernandez, Angel, Jimenez-Moreno, Gabriel

论文摘要

神经形态工程集中了许多研究人员的努力,因为它作为研究领域的巨大潜力,在寻找生物神经系统的优势以及整个大脑的利用中,以设计更有效和实时的应用程序。为了开发尽可能接近生物学的应用,使用了尖峰神经网络(SNN),被认为是生物学上的,并且构成了第三代人工神经网络(ANN)。由于某些基于SNN的应用程序可能需要存储数据才能以后使用它,因此在数字电路中既存在的东西又存在于某种形式的生物学中,因此需要尖峰内存。这项工作提出了内存的尖峰实现,这是计算机架构中最重要的组件之一,并且对于设计完全尖峰计算机可能是必不可少的。在设计这种尖峰内存的过程中,还实施了不同的中间组件和测试。测试是在大三角形神经形态平台上进行的,并允许验证用于构建所构图的方法。此外,这项工作深入研究了如何使用这种方法来构建尖峰块,并包括IT和其他类似作品中使用的方法的比较,该作品着重于峰值组件的设计,其中包括尖峰逻辑门和尖峰记忆。所有实施的块和开发的测试均在公共存储库中可用。

Neuromorphic engineering concentrates the efforts of a large number of researchers due to its great potential as a field of research, in a search for the exploitation of the advantages of the biological nervous system and the brain as a whole for the design of more efficient and real-time capable applications. For the development of applications as close to biology as possible, Spiking Neural Networks (SNNs) are used, considered biologically-plausible and that form the third generation of Artificial Neural Networks (ANNs). Since some SNN-based applications may need to store data in order to use it later, something that is present both in digital circuits and, in some form, in biology, a spiking memory is needed. This work presents a spiking implementation of a memory, which is one of the most important components in the computer architecture, and which could be essential in the design of a fully spiking computer. In the process of designing this spiking memory, different intermediate components were also implemented and tested. The tests were carried out on the SpiNNaker neuromorphic platform and allow to validate the approach used for the construction of the presented blocks. In addition, this work studies in depth how to build spiking blocks using this approach and includes a comparison between it and those used in other similar works focused on the design of spiking components, which include both spiking logic gates and spiking memory. All implemented blocks and developed tests are available in a public repository.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源