论文标题

异常正交多项式的超对称性和形状不变性

Supersymmetry and Shape Invariance of exceptional orthogonal polynomials

论文作者

Yadav, Satish, Khare, Avinash, Mandal, Bhabani Prasad

论文摘要

我们在超对称量子力学(SUSYQM)的框架中讨论了异常的拉瓜和特殊的雅各比正交多项式。我们表达了雅各比和拉瓜尔的差分方程式作为特征值方程式,并与时间独立的Schrödinger方程式进行类比,以定义“汉密尔顿人”的“汉密尔顿人”,使我们能够在SUSYQM和SUSYQM的EOPS中研究与SUSYQM的EOPS相关联,以实现该系统的构图。我们表明,潜在的形状不变性对称性负责与这些多项式相关的微分方程的溶解度。

We discuss the exceptional Laguerre and the exceptional Jacobi orthogonal polynomials in the framework of the supersymmetric quantum mechanics (SUSYQM). We express the differential equations for the Jacobi and the Laguerre exceptional orthogonal polynomials (EOP) as the eigenvalue equations and make an analogy with the time independent Schrödinger equation to define "Hamiltonians" enables us to study the EOPs in the framework of the SUSYQM and to realize the underlying shape invariance associated with such systems. We show that the underlying shape invariance symmetry is responsible for the solubility of the differential equations associated with these polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源